

Multifunctional Probe

The IO Probe is an integrated, multifunctional probe designed to enable multimodal neuroscience experiments with a single implant. It features capabilities for optogenetic stimulation, fiber photometry, electrophysiology, stimulation, and local drug and/or gene delivery all within a single probe by integrating a polymer optical waveguide, tungsten or carbon microelectrodes, and a microfluidic channel.

Four modalities, one probe: simultaneously perform optogenetic stimulation, fiber photometry, electrophysiology, and local drug or gene delivery at the same site.

"One-step optogenetics/photometry": integrated microfluidic channel enables viral vector delivery (AAVs encoding opsins or reporters) directly at the probe tip during implantation.

Compact and lightweight: designed for compatibility with freely behaving rodent studies and adaptable for larger animal models.

Versatile configurations: opto-electro-fluidic, opto-electric only, and opto-fluidic only probe variations available.

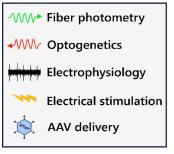
Large animal probes available: enabling multi-modal experiments in deep brain regions of NHPs and other large-animal models.

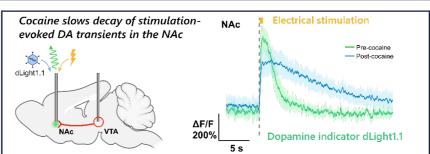
Connector options:

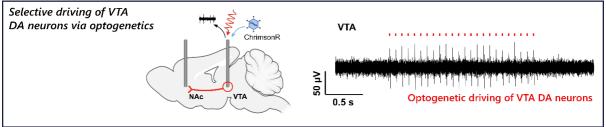
Optical:

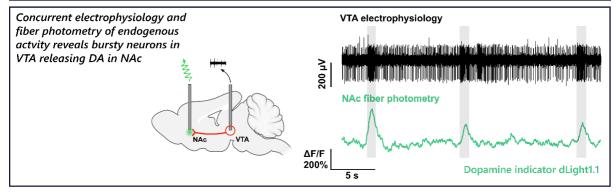
- 2.5 mm, 12.7 mm long Stainless Steel Ferrule
- 2.5 mm, 10.5 mm long Ceramic Ferrule
- 1.25 mm, 6.4 mm long Stainless Steel Ferrule
- 1.25 mm, 6.4 mm long Ceramic Ferrule
 - •Note: Stainless steel ferrules are recommended for fiber photometry experiments.

Fluidic:


• 1/16" OD x 0.010" ID PEEK tubing - compatible with 32G needle


Electrical:


• Omnetics OM-16, A72823-001


Specifications

Probe Dimensions	310 μm x 280 μm x custom length, 1.4g
Optical Waveguide Diameter	200 μm
Microfluidic channel dimensions	100 μm x 40 μm
Electrode Size/Material	20 µm, Tungsten or Dexmat Galvorn carbon nanotube (CNT) fiber

N. Driscoll et al., Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. Adv. Mater. 2024, 2408154.